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1 Exponential Families and Differential Identities

1.1 Examples of exponential families

Recall from last time that an s-parameter exponential family is a family P = {Pη :
η ∈ Ξ} with densities

pη(x) = eη
>T (x)−A(η)h(x)

with respect to a base measure µ on X . Here,

• T : X → Rs is called the sufficient statistic,

• h : X → [0,∞) is called the carrier/base density,

• η ∈ Ξ ⊆ Rs is called the natural parameter,

• A : Rs → R is called the cumulant generating function (or the normalizing
constant).

Last time, we mentioned that we can think of an s-parameter exponential family as an
s dimensional hyperplane in the space of log densities.
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An important thing to note about this picture is that it shows us that the h and T are not
unique. Only the span really matters.

Sometimes it is more convenient to use a different parameterization than the natural
parameter:

pθ(x) = eη(θ)
>T (x)−B(θ)h(x), B(θ) = A(η(θ)).

Example 1.1. Consider the family of Gaussian distributions, X ∼ N(µ, σ2) with µ ∈ R
and σ2 > 0. Here, θ = (µ, σ2). To describe this as an exponential family, we have

pθ(x) =
1√

2πσ2
e−(x−µ)

2/(2σ2)

= exp

(
µ

σ2
x− 1

2σ2
x2 − µ2

2σ2
− 1

2
log(2πσ2)

)
.

So we have

η(θ) =

[
µ/σ2

−1/(2σ2)

]
, T (x) =

[
x
x2

]
, h(x) = 1, B(θ) =

µ2

2σ2
+

1

2
log(2πσ2).

In terms of η, we can say

pη(x) = exp

(
η>
[
x
x2

]
−A(η)

)
, A(η) = − η21

4η2
+

1

2
log(−π/η2).

Example 1.2. Now suppose X1, . . . , Xn
iid∼ N(µ, σ2). Then

pθ(x) =
n∏
i=1

p
(i)
θ (xi)

= exp

(
n∑
i=1

[
µ

σ2
xi −

1

2σ2
x2i −

(
µ

2σ2
+

1

2
log(2πσ2)

)])

= exp

(
µ

σ2

n∑
i=1

xi −
1

2σ2

n∑
i=1

x2i − n
(

µ

2σ2
+

1

2
log(2πσ2)

))
.

So we have

η(θ) =

[
µ/σ2

−1/(2σ2)

]
, T (x) =

[∑
i xi∑
i x

2
i

]
, h(x) = 1, B(θ) = nB(1)(θ).

Proposition 1.1. Suppose X1, . . . , Xn
iid∼ p

(i)
η (x) = eη

>T (x)−A(η)h(x). Then the distribu-
tion of X = (X1, . . . , Xn) follows an exponential family with sufficient statistic

∑n
i=1 T (xi)

and cumulant generating function nA(η).
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Proof.

X ∼
n∏
i=1

p(i)η (xi)

=

n∏
i=1

eη
>T (xi)−A(η)h(xi)

= exp

(
η>
∑
i

T (xi)− nA(η)

)
n∏
i=1

h(xi).

T (X) also follows a closely related exponential family.

Proposition 1.2. Suppose X ∈ X and T (X) ∈ T ⊆ Rs with h(x) = 1 and X ∼ pη(x) =

eη
>T (x)−A(η) with respect to µ. For a set B ⊆ T , define ν(B) = µ(T−1(B)). Then

T (X) ∼ qη(t) = eη
>t−A(η)

with respect to ν.

Example 1.3. In the discrete case, this is

Pη(T (X) ∈ B) =
∑

x:T (x)∈B

eη
>T (x)−A(η)µ({x})

=
∑
t∈B

∑
x:T (x)=t

eη
>t−A(η)µ({x})

=
∑
t∈B

eη
>t−A(η) µ(T−1({x}))︸ ︷︷ ︸

ν({x})

.

So T ∼ eη>t−A(η) with respect to ν.

Example 1.4. Let X ∼ Binomial(n, θ). We can turn this into an exponential family as
follows: For θ ∈ (0, 1),

pθ(x) = θx(1− θ)n−x
(
n

x

)
=

(
θ

1− θ

)x
(1− θ)n

(
n

x

)
= exp

(
x log

θ

1− θ
+ n log(1− θ)

)(
n

x

)
The natural parameter is η(θ) = log θ

1−θ .
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Example 1.5. Let X ∼ Pois(θ) with density pλ(x) = λxe−λ

x! with respect to counting
measure on N. This is an exponential family

pλ(x) = exp ((log λ)x− λ)
1

x!

with natural parameter η(λ) = log λ.

Most of the families of distributions you can find on, say, Wikipedia, will be exponential
families.

1.2 Differential identities for the cumulant generating function

Begin with the equation

eA(η) =

∫
eη
>T (x)h(x) dµ(x)

and then differentiate. Here is a criterion which lets us differentiate under the integral:

Theorem 1.1 (Theorem 2.4 in Keener). For f : X → R, let Ξf = {η ∈ Rs :
∫
|f |eη>Th dµ <

∞}. Then g(η) =
∫
feη

>Th dµ has continuous partial derivatives of all orders for interior
points η ∈ Ξ0

f , and we can find them by differentiating under the integral.

In particular, letting f = 1, we get that A(η) has infinitely many partial derivatives in
Ξ0
1. So we can calculate

∂

∂ηj
eA(η) =

∫
∂

∂ηj
eη
>T (x)h(x) dµ(x),

which gives

∂A

∂ηj
(η) =

∫
Tj(x)eη

>T (x)−A(η)h(x) dµ(x)

= Eη[Tj(X)].

This shows that

Proposition 1.3.
∇A(η) = Eη[T (X)].

Taking second derivatives, we have

∂2A

∂ηj∂ηk
eA(η) =

∫
∂2

∂ηj∂ηk
eη
>T (x)h(x) dµ(x),
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which gives us (
∂2A

∂ηj
− ∂A

∂ηj

∂A

∂ηk

)
=

∫
TjTke

η>T−A(η)h dµ.

So we get
∂2A

∂ηj∂ηk
(η) = Eη[TjTk]− Eη[Tj ]Eη[Tk] = Cov(Tj , Tk).

In total, we get

Proposition 1.4.
∇2A(η) = Varη(T (X)).

Differentiating repeatedly, we get

e−A(η)
∂k1+···+ks

∂k1η1 · · · ∂ksηs
(eA(η)) = Eη[T k11 · · ·T

ks
s ].

This is because MT
η (u) = eA(η+u)−A(η) is the moment generating function (MGF) of

T (X) when X ∼ pη:

MT (X)
η (u) = Eη[eu

>T (X)]

=

∫
eu
>T eη

>T−A(η)h dµ

= eA(η+u)−A(η)
∫
e(η+u)

>T−A(η+u)h dµ︸ ︷︷ ︸
=1

.
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